

Laboratory Simulations of Aqueous Reactions in Lunar Polar Regions

Chengzheng Yong, A. Wang, Y. C. Yan, B. L. Jolliff

Washington University in St. Louis

McDonnel Center for the Space Sciences

Earth, Environmental, & Planetary Sciences

Background

- We might expect aqueous alteration on the Moon in the polar regions
- Heat + ice + pressure + long duration = alteration
- Experimental methods to simulate alterations

Background

We might expect aqueous alteration on the Moon in the polar regions

Heat + ice + pressure + long duration = alteration

Experimental methods to simulate alterations

Experiment 1: Vacuum chamber + Energetic electron impact (EEI)

Key functions:

- Using EEI to activate the sample surface
- React water with olivine and basaltic glass
- Use D₂O (to distinguish from atmospheric H₂O)
- Controlled P-T condition ~16m under the surface

Exp 1: Vacuum chamber + EEI

Energetic electron impact (EEI) in Argon

5

Bake samples at 500 °C in vacuum

Immerse samples in D_2O

Set T = 65 °C

Olivine before reaction

- Teflon-lined
- Solid: olivine or basaltic glass 50 mg
- Solution: $0.5 \text{ ml } D_2O + 0.5 \text{ ml dilute } H_2SO_4 (16\%)$
- Temperature: 90 °C
- Duration: 10 days, 20 days, 44 days
- Characterization: FT-IR and Raman

Exp 2: FT-IR spectra – the main reaction product is hydrated silica

Basaltic glass IR spectra

Olivine IR spectra

Exp 2: FT-IR spectra – the main reaction product is hydrated silica

Basaltic glass IR spectra

Olivine IR spectra

Duration	Olivine	Basaltic glass
10 days	Sulfate feature	No apparent change
20 days	Hematite feature	No apparent change
44 days	Completely dissolved	Sulfate+D ₂ O+H ₂ O

- Olivine: different reaction products depending on reaction time.
- Basaltic glass: dissolves slower than olivine

Duration	Olivine	Basaltic glass
10 days	Sulfate feature	No apparent change
20 days	Hematite feature	No apparent change
44 days	Completely dissolved	Sulfate+D ₂ O+H ₂ O

- Olivine: different reaction products depending on reaction time.
- Basaltic glass: dissolves slower than olivine

Duration	Olivine	Basaltic glass
10 days	Sulfate feature	No apparent change
20 days	Hematite feature	No apparent change
44 days	Completely dissolved	Sulfate+D ₂ O+H ₂ O

- Olivine: different reaction products depending on reaction time.
- Basaltic glass: dissolves slower than olivine

Exp 2: H₂O, D₂O, sulfate Raman features after 44 days of reaction with basaltic glass

Duration	Olivine	Basaltic glass
10 days	Sulfate feature	No apparent change
20 days	Hematite feature	No apparent change
44 days	Completely dissolved	Sulfate+D ₂ O+H ₂ O

- Olivine: different reaction products depending on reaction time.
- Basaltic glass: dissolves slower than olivine

Exp 2: Hematite Raman feature after 20 days of reaction in olivine

Conclusions

Exp 1 (EEI + D_2O + heating)

 D₂O feature identified by Raman spectroscopy

EEI effectively activates grain surfaces as we might expect occurs on the lunar surface by space weathering

Exp 2 (Acid + D_2O + longer term heating)

- Dissolution of olivine/basaltic glass
- Evaporation of "brine" produces secondary deposits of salts

Thank you!

Contact:

Chengzheng@wustl.edu